Simplification of Exponents and Power


 
 
Concept Explanation
 

Simplification of Exponents and Power

To simplify the exponents, we have some laws. These laws together can be used to covert exponent in the simplest form.

1. a^{m}times a^{n}=a^{m+n}

2.  frac{a^{m}}{a^{n}}=a^{m-n}

3. frac{1}{a^{m}}=a^{-m}

4. frac{a^{m}}{a^{n}}=left ( frac{a}{b} right )^{m}

5. left ( a^{m} right )^{n}=a^{mn}=left ( a^{n} right )^{m}

.... (More Text Available, Login?)
Sample Questions
(More Questions for each concept available in Login)
Question : 1

Simplify :  large frac{9^{-6}times 6^{3}}{6^{-3}times 9^{6}}

Right Option : A
View Explanation
Explanation
Question : 2

Match the following provided that a and b are any rational numbers different from zero and x, y are any rational numbers.

List-â… (Uses Of Exponent Rules)  List-â…¡(Term With Different Base And Same Exponent)
(A) (a/b)^x (i) frac{1}{a^x}
(B) a^{(-x)}    (ii) frac{a^x}{b^x}
(C)  (ab)^{x} (iii) a^{x}b^{x}

                              

Right Option : B
View Explanation
Explanation
Question : 3

Simplify:

left ( frac{5}{8} right )^{-7}times left ( frac{8}{5} right )^{-5}

Right Option : A
View Explanation
Explanation
 
 
 
Related Videos
Language - English
Language - English



Students / Parents Reviews [10]